
AD-AI92 716 CONTENT-ADDRESSABLE MEMORY STORAGE BY NEURAL NETWORKS: 1/1
A GENERAL MODEL AN..(U) BOSTON UNJY MA CENTER FOR
ADAPTIYE SYSTEMS S GROSSBERG MAR 9B RFOSR-TR-B8-S431

UCASILMSIFF49968-8-CCSB37F/0 12/9 NL



I

Jig1

H~~ag. ~ 2.20

IIL25 L.4A

QMICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS- 1963-A

)L

vp

% %



SECURITY CLAS)ICTO OF THIS PAGE (When Does Entered)

IREAD INSTRUCTIONSREPORT DOCUMENTATION PA BEFORE COMPLETING FORMC~ 1. REPORT NUMBER 2. GOVT ACCESSION No. 3. RECIM ~ CT ~~pj-£FW.TM*_ 8s8-0431 UlbtL -~
I~4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Content-Addressable Memory Storage
By Neural Networks: A General Model______________

0) And Global Liapunov Method 6 EFRIG0G EOTNME

'.AUTHOR(s) S OTATO RN USRs

Stephen Grossberg AMF92-6C03

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Center .for Adapt .ve Systems AREA & WORK UNIT NUMBERS

Department ol iathematice, Boston University 61102F
Boston, MA 02215 93 O QjI

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFOSR Life Sciences Directorate March 1988
Boln AiLFrc Bs 13. NUMBER OF PAGES

11' o- nr n,3222 
pages

I-. MOITORMHG AGENCY NAME & ADORESS(if different fromt Controlling Office) 15. SECURITY CLASS. (of this report)

unclassified

I5a. DECL ASSI F1CATION'OOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

IS. SUPPLEMENTARY NOTES

To appear in E.L. Schwartz (Ed.), Computational Neuroscience
Cambridge, MA: MIT Press, 1988 4

19. KEY WORDS (Continue on reverse side it necessary and identify by block number)

20. ABSTRACT (Continue on reverse side It necessary and identify by block number)

-Many neural network models capable of content-addressable memory are shown to
be special cases of the general model and global Liapunov function, described b3
Cohen and Grossberg (1983).-sThese include examples of the additive, brain-
state-in-a-box, McCulloch-Pitts, Boltzmann machine, shunting, masking field,
bidirectional associative memory, Volterra-Lotka, Gilpin-Ayala, and Eigen-
Schuster models. The Cohen-Grossberg model thus defines a general principle
for the design of content addressable menory, that is shared V 1al model-z

t % an* 
a, 

,\



SECURITY CLAMFSiCA~LDN OF T;tS AE..rr-.-.

20. Abstract (continued)

exemplars of such a general design constitutes a Iomjtiin2 nvr1n 7 -
a general model and analytic method defines a computational framework within
which specialized model exemplars may be compared to discover which models are
best able to explain particular parametric data about brain and behavior, or to
solve particular technological problems

uP

-. 4fYC ASWC T0wOr Ge -LdoEr d

%



A R.nT. s8-0 431

CONTENT-ADDRESSABLE MEMORY STORAGE

BY NEURAL NETWORKS: A GENERAL MODEL

AND GLOBAL LIAPUNOV METHOD

Stephen Grossbergt
Center for Adaptive Systems

Boston University
111 Cummington Street

Boston, MA 02215

To appear in E.L. Schwartz (Ed.), Computational Neuroscience
Cambridge, MA: MIT Press, 1987

Aoevsstion For
ITIS 64ii

DIC TAB
Ubsaotmed 1"Jiit It~~t 1o* _I

! -4
_Dleitrlbutl on/

Availability Codes
l - Itvafi ud/or---

5 Dist /Special

t Supported in part by the Air Force Office of Scientific Research (AFOSR F49620-
86-C-0037 and .V R F19620-7-C-0018) and the National Science Foundation (NSF

* IRI-84-17756).
Ack nowledtgen nt.-: Thanks to (Cynthia Surlita and (Carol Yitnakakis for their valuable

a-si tance in the preparation of the man usc ript amid Il,1 7 a TIm.

S 8 502 137



ABSTRA(T

Many neural network models capable of content-addressable memory are shown to

be special cases of the general model and global Liapunov function described by Co-

hen and Grossberg (1983). These include examples of the additive, brain-state-in-a-box,

.McCulloch-Pitts, Boltzmann machine, shunting, masking field, bidirectional associative

memory. Volterra-Lotka, Gilpin-Ayala. and Eigen-Schuster models. The Cohen-Grossberg

model thus defines a general principle for the design of content-addressable networks. A

model-independent property, such as content-addressable memory, that is shared by all

model exemplars of such a general design constitutes a computational invariant. Such

a general modcl and analytic method defines a computational framework within which

specialized model exemplars may be compared to discover which models are best able

to explain particular parametric data about brain and behavior, or to solve particular

technological problems.
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1. The Role of Design Principles an(l CouiputationIl Invariants ini Coinpu-

tational Neuroscience

Due to the highly interactive nature of brain dynamics, the analysis of general design

principles, cellular mechanisms. network modules. and functionally specialized multi-level

architectures have proceeded hand-in-hand, with each level of analysis clarifying the scien-

tific understanding of the other levels. In all of these modelling endeavors, mathematical

analysis and parametric computer simulations have played an important role by demon-

strating how complex emergent properties may arise from interactions among simpler net-

work components. Mathematical analysis has also been particularly useful towards the

identification of general design principles by clarifying how ostensibly different specialized

model mechanisms may all be variations of a general computational theme, in that they

all exhibit one or more important computational invariants.

The mathematical characterization of such a computational invariant greatly facilitates

a finer, comparative analysis which cuts across the specialized models that are capable of

generating the invariant. By sharply distinguishing the general from the particular, such

a comparative analysis of specialized models helps to discover which model is best able

to explain particular parametric behavior about brain and behavior, or to solve a partic-

ular technological problem. Thus, after such a general design principle or computational

invariant is discovered, representative models may be reorganized in a way that pays less

attention to accidents of their historical discovery and development than to their functional

and computational properties. The identification of such design principles and computa-

tional invariants is thus an important goal of computational neuroscience.

2. Content-Addressable Memory aid Liapunov M4ethods

The present chapter describes a general (esign principle for constructing neural net-

works that are capable of content-addresable imnlory. or CAM. From a mathematical

er.-pe'tive. the que-stiot ot content-aidrc-,ab;l ietai(ry in a mra l net\'(ork call be for-
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mulated as follows: Under what conditions does a neural network always approach an

equilibrium point in response to an arbitrary, but sustained, input pattern? The equilib-

rium point represents the stored pattern in response to the input pattern. In a satisfactory

analysis of this problem, the behavior of the network in response to arbitrary initial data,

an arbitrary sustained input pattern, and an arbitrary choice of network parameters is

provided. Also an account of how many equilibrium points exist and of how they are

approached through time is desirable. Such a mathematical analysis is called a global

analysis, to distinguish it from a local stability analysis around individual equilibrium

points.

Amari and Arbib (1982) and Levine (1983) have described a number of contributions

to the local analysis of neural networks. Our concern herein is with global methods. A

global analysis of equilibrium behavior is of importance for an understanding both of CAM

and of the types of nonequilibrium behavior-such as travelling waves, bursts, standing

waves, and chaos which can be obtained by perturbing off systems which always approach

equilibrium (Carpenter, 1977a, 1977b, 1979, 1981; Cohen and Grossberg, 1983; Ellias and

Grossberg. 1975: Ernientrout and Cowan, 1979, 1980; Hastings, 1976, 1982; Hodgson, 1983;

Kaczmarek and Babloyantz, 1977). A global mathematical analysis of nonlinear associative

learning networks was begun in Grossberg (1967, 1968b). A global mathematical analysis

of nonlinear shunting cooperative-competitive feedback networks was begun in Grossberg

(1973). Some of the main articles in these series are brought together in Grossberg (1982).

V. One technique for the global approach to equilibrium which has attracted widespread

interest is the use of global Liapunov, or energy, methods. Global Liapunov methods were

introduced for the analysis of increasingly large classes of neural networks in the 1970's

(Grossberg. 1977, 1978a, 1978b, 1980, 1981).

Prior to the use of Liapunov methods for the analysis of neural networks, such methods

were used to analyse other biological networks. notably networks arising in mathematical

ecolog, y. For ex;::nph,. NlacArth iir I1970W dcribod a quadra tic Liapinov function for

- . , a - p a a ~ ~I



proving local asymptotic stability of isolated e(quilibrium points of Volterra-Lotka systems

with symmetric coefficients. Goh and Agnew (1977) described a global Liapunov function

for Volterra-Lotka and Gilpin-Ayala systems in cases where only one equilibrium point ex-

ists. Liapunov functions were also described for Volterra-Lotka systems whose off-diagonal

terms are relatively small (Kilmer, 1972; Takeuchi. Adachi. and Tokumaru. 1978). Such

constraints were. however, too limiting for the design of CAM systems aimed at trans-

forming and storing a large variety of patterns. Herein I summarize a general model of

a nonlinear cooperative-competitive neural network for which a global Liapunov function

was explicitly constructed to ensure CAM. I then show that a number of popular models

are special cases of the general model, and thus are capable of CAM.

Cohen and Grossberg (1983) described a general principle for designing CAM networks

by proving that models that can be written in the form

d n '

dt , = a,(z,)[b,(x,) - >j ed 3()] (1)
j I

admit the global Liapunov function

b = - ,d(.) dc, + >... Ckd,(x,)dk(Xk) (2)
t- 71- ,k =!

if the coefficient matrix C =11 c,) and the functions a,. b,. and d) obey imild technical

conditions, including

Symmetry:

CU = c. 
(3)

Posit ivity:

a,(r,) 0 (4)

N\onot olicity:

,' (x ) . (5)
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Integrating V along trajectories implies that

dV

If (4) and (5) hold. then T V < 0 along trajectories. Once this basic property of a Liapunov

function is in place, it is a technical matter to rigorously prove that every trajectory

approaches one of a possibly large number of equilibrium points.

For expository vividness, the functions in the Cohen-Grossberg model (1) are called

the amplification function a,, the self-signal function bi , and the other-signal functions dj.

Specialized models are characterized by particular choices of these functions.

3. Additive Model

The systematic physical and mathematical development of the additive model began

in the late 1960's; e.g.. in Grossberg (1967, 1968a, 1968b, 1969a, 1969b, 1970a, 1970b) and

Grossberg and Pepe (1971). Cohen and Grossberg (1983, p.819) noted that "the simpler

additive neural networks ... are also included in our analysis". The additive equation can

be written using the coefficients of the standard electrical circuit interpretation (Plonsey

and Fleming. 1969) as
dx, 1

C, d -. r2 +)z 3 2 + ',. (7)

Substitution into (1) shows that

1 (constant!) (8)

1

b,(.r,) 1 x, + I, (linear!) (9)

c -TI) (10)

and

,l~tz ) = f (..,) (.i

.4
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Thus in the additive case. the amplification function (8) is a positive constant, hence

satisfies (4), and the self-signal term (9) is linear. Substitution of (8)-(11) into (2) leads

directly to the equation

= 1 Zn,k=l

This Liapunov function for the additive model was later published by Hopfield (1984).

In Hopfield's treatment, j is written as an inverse fj-(V). Cohen and Grossberg (1983)

showed, however, that although fi(xi) must be nondecreasing, as in (5), it need not have

an inverse in order for (12) to be valid.

4. Brain-State-in-a-Box Model: S E Exchange

The BSB model was introduced in Anderson, Silverstein, Ritz. and Jones (1977). It is

often described in discrete time by the equation

n

X,(t + 1) = S(xi(t) + a I Ajxj(t)) (13)
j=1

using symmetric coefficients

4ij = A, (14)

and a special type of nonlinear signal function S(u) that characterizes the model. The

signal function is a symmetric ramp function:

F if w > FS(w) u, if -F< w < F. (15)

-F if w < -F

Thus each STM trace x, obeys a linear equation until its argument reaches the hard

saturation limit F.

The BSB model has been used to discuss categorical perception in ternis of its formal

contrast enlanccnilt )roperty that each x, ten(ls to approach a limiting value ± F. and

thus that the vc tor (.1. x .... . x,) tlnds to approach a c'oner of th box (=F. tF ..... ± F

~~~~~~~~~ ........ "~'. %~ ~ .. ~ .......~ ..... V~ % ~ V



as time goes on. An alternative explanation of contrast enhancement by a nonlinear feed-

back network was provided in Grossberg (1973) using a sigmoid signal function, rather

than a function linear near zero. coupled to the soft saturation dynamics of a shunting

network, rather than the hard saturation of a symmetric ramp. This is still a topic un-

dergoing theoretical discussion (Anderson, Silverstein. Ritz, and Jones. 1977: Grossberg,

1978c, 1987d).

The BSB model can be rewritten as an additive model with no input and a special

signal function that satisfies (5). Hence it is a special case of model (1). To see this, rewrite

(13) in the form

X,(t + 1) = S(Z B2 j3 j(t)) (16)
j='

using the coefficient

B., = 62j + ctA., (17)

where 23- = 1 if i = j and 0 if i j. By (14), it follows that

3= B,-. (18)

Although (16) is written in discrete time for computational convenience, it needs to be

expressed in continuous time in order to represent a physical model, as in

d 
(

-x, = -x, + S(_ B,,x,). (19)
3=1

Define the new variables yi by

Y,= E A., x(20)
j=1

Then
dn
d ,,: -,, + E B23S(y 3 ). (21)

1 1

Comparison of (21) with (7) shows that the BSB model is an additive inodel such that

each input I, = 0. This simple change of coordinates from (19) to (21) is so important in

neural modelling that I giv, it a name: Signal-.uu, .u :t Erchrlur.



The observation that, via S V' Exchange. a nonlinear signal of a sum. as in (19), can

be rewritten as a sum of nonlinear signals, as in (21). shows that a number of models

which have been treated as distinct are mathematically identical. In contrast, this type of

transformation cannot be carried out on shunting models such as (31) below.

The Liapunov function for (21) is found by directly substituting into model (1) ex-

pressed in terms of the variables y,:

d
j y = ad,(y)[b(y) - C,,dj(yj). (22)

3=1

Since ai(yi) = 1, bi(yi) = -yi, cij - -Bij, and d3 (y3 ) = S(y3 ), substitution into (2) yields

V = f' ,s'(E,)d , - E BjkS(y3 )S(Yk). (23)
1k=1

Using the definitions in (15). (17), and (20), (23) can be rewritten in terms of the original

variables xi as follows:

V - 2 Z A kxjxk. (24)
jk=

Golden (1986) has derived (24) from a direct analysis of the BSB model.

5. The McCilloch-Pitts Model

This classical model takes the form

x,(t + 1) = sgn(. A,, x,(t) - B,). (25)
3=1

Letting

M(w) = sgn(w - B,), (26)

(25) can be rewritten as

x,(f + 1) = M(> A, 3jx(t)). (27)
3=1

As in the analysis of (19). (27) can be rewritten in continuouS time, in terms of the variables

y, via S v Exchange:

d,-y, + '-4 1J.(, (2S)
.1 7

'.
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- and is thus al.so a symmetric additive model with zero inputs. In addition. its signal

function M(yj) has a zero derivative (M'(y) = 0) except at y3 = 0. Substitution of this

additional property into (23) shows that the Liapunov function for the continuous time

McCulloch-Pitts model is

I n
V = Y A.kM(y)M(yk), (29)

j,k i

which is the continuous time version of the discrete time Liapunov function described by

Hopfield (1982).

6. The Boltzmann Machine

The state equation of the Boltzmann machine (Ackley, Hinton, and Sejnowski, 1985)

is also an additive equation with symmetric coefficients. Its signal function is the sigmoid

logistic function

f(w) - 1 + '(30)

which satisfies (5) and is thus a special case of model (1). Thus the Boltzmann machine

is a specialized additive model regulated by simulated annealing (Geman. 1983, 1984;

Kirkpatrick, Gelatt, and Vecchi, 1982).

7. Shunting Cooperative- Competitive Feedback Network

All additive models lead to constant amplification functions a,(x,) and linear self-

feedback functions b(x,). The need for the more general model (1) becomes apparent when

the shunting model is analysed. Consider, for example, a class of shunting models in which

each node can receive excitatory and inhibitory inputs I, and J,. respectively, and each

node can excite itself and can inhibit other nodes via nonlinear feedback. Such networks

Model on-center off-surroind interactions arnoing cells which obey membrane equations

(Gros!bherg. 1973: Hodgkin. 1964: Kandel and Schwartz. 1981: Katz, 1966; Plonsey and

Flvning. 1969). In particular. let

d
,= -A,x, + (B, - .r,)[I, + f,(.r,)! - (xr, + . A " D, , (31)

wt!

k'

V



In (31). each x, can fluctuate wit hin the finite interval -C,. B,[ in respons.e to the const ant

inputs I, and J,, the state-dependent positive feedback signal f,(x,). and the negative

feedback signals D,g,(x,). It is assumed that

D,,= D, > 0 (32)

and that

!gj(xj) >_ O. (33)

In order to write (31) in Cohen-Grossberg form, it is convenient to introduce the variables

y, = x, + C,. (34)

In applications. Ci is typically nonnegative. Since x, can vary within the interval [-C,. B,'.

y, can vary within the interval [0, B, + CJ of nonnegative numbers. In terms of these

variables, (31) can be written in the form

d
W-y = at(y 2 [b7(y 2) - C 2,dj(y,) (22)

where

a(y,) = y, (nonconstant!). (35)

~1
b,(y,) -[A, C, - (A, + J,)yj + (B, + C - y')(I, + f,(y' - C))[ (nonlinear!), (36)

Ci, = D,. (37)

and

d) (y,) = g,(yj - C)) (noninvertible!). (38)

Unlike the additive model, the amplification function ai(y,) in (35) is not a constant. In

addition. the self-signal function b,(y,) in (36) is not necessarily linear, notably because

the feedback signal f,(x, - C,) is often nonlinear in applications of the shunting model: in

ptarti(-lar it is often a siginoid or iriltiple siginoid signal fUltction (Ellias and Grosshe rg.

- - ---- -- -- -& -- - -- - -- - -- - -



1975: Grossberg. 1973. 1977. 1978b; Grossberg and Levine. 1975; Sperling. 1981). Signioid

signal functions, and approximations thereto, also appear in applications of the additive

model and its variants (Ackley, Hinton, and Sejnowski, 1985: Arnari and Arbib, 1982:

Freeman. 1975. 1979; Grossberg, 1969a, 1982; Grossberg and Kuperstein. 1986; Hinton

and Anderson. 1981: Hopfield. 1984; Rumelhart and McClelland, 1986). Such applications

do not require the full generality of the Liapunov function (1) because the nonlinear signal

function can then be absorbed into the terms d,(x,).

Property (4) follows from the fact that a1 (yi) = yj > 0. Property (5) follows from

the assumption that the negative feedback signal function g, in (38) is monotone non-

decreasing. Cohen and Grossberg (1983) proved that g, need not be invertible. A signal

threshold may exist below which g, = 0 and above which g , may grow in a nonlinear way.

The inclusion of nonlinear signals with thresholds better enables the model to deal with

fluctuations due to subthreshold noise. On the other hand, thresholds are not the only

mechanisms which can suppress noise in a cooperative-competitive feedback network.

8. Masking Field Model

In many applications of the shunting and additive models, the coefficients c, in (1)

may be asymmetric. thereby rendering the Liapunov function (2) inapplicable. Asym-

metric coefficients typically occur in problems relating to the learning and recognition

of temporal order in behavior. Consequently. a number of mathematical methods have

been developed from the earliest days of neural network theory to analyse models with

asymmetric interaction coefficients.

On the other hand. certain network models may have asymmetric interaction coeffi-

cients, yet be reduceable to the form (1) with symmetric interaction coefficients through a

suitable change of variables. The masking field model is a shunting network of this type.

The masking field model was introdtuced in (rossberg (197S(t: reprinted in Grossberg,

19S2) to explain data about speech learning, word recotnitio(I, and the learning of adap-



tive sensory-motor plans. It has been further developed through computer sinulat ions in

Cohen and Grossberg 1986, 1987). A masking field is a multiple-scale, self-similar, auto-

matically gain controlled, cooperative-competitive nonlinear feedback network which can

generate a compressed but distributed STM representation of an input pattern as a whole.

of its most salient parts, and of predictive codes which represent larger input patterns of

which it forms a part. The masking field model is thus a specialized type of vector quanti-

zation scheme (Gray. 1984). Its multiple-scale self-similar properties imply its asymmetric

interaction coefficients.

The STM equation of a typical masking field is defined by

d (J) - Ax + (B- xl¢)) Ej ( ) + D I J j()
~(39)

- ( + C) _,. ( K I (1+ I K nJ I)
Yim,K I K (1+ I KnJ I)

In (39), x (J ) is the STM trace of the ith masking field node that receives excitatory input

j* JEJ V from the unordered set J of input items. Notation I J I counts the number

of items in set J and thereby keeps track of the number of spatial scales that go into each

version of the model.

The inhibitory interaction coefficient

K 1(1+ 1 K nl J (40ZmKKI(+IKfJI) (40)
Z_ n ,K I K 1(1+ 1K n J )

in (39) is an asymmetric function of J and A. Despite this fact, (39) can be written in

Cohen-Grossberg form as

it,= aj)(y-))[bd)(yhj)) - j ed( )) (41)

with symmetric coefficients

cK JK =1+ 1 K n.1 (42)

-1



in ternis of the variables

-j) F (X J)+ C) (43)

where

FJIZ IKl(l+1K n JI) "  (44)

This is seen as follows. Since F ! is the denominator of (40). it can be used to divide

term x( J) + C in (39). Then the asymmetric term I K I in the numerator of (40) can be

absorbed into the definition of g in (39). Then by redefining and rearranging terms as in

(35)-(38). equation (41) holds with

, (i 1 (J) (45)

bl)(y l )  [AC A (J) (B +C -(j))

(J) - + ill (46)

(I j ) + D I J I Ftjf(FjyU V) - C))]

where

P) F Pji 1: EjP( ) '  (47)
IE J

and

K(K(YK)) g(F", y( K )
- C). (48)

Thus the masking field model is a specialized Cohen-Grossberg model.

9. Bidirectional Associative Meniories: Syinietrizing an AsymnmIetric In-

teraction Matrix

Other procedures have also been devised for dealing with systems having asymmetric

coefficients: for example, given an arbitrary n x Yn coefficient matrix Z =1 z,, I from a

network level F, to a network level F2 with STM traces x, and y,. respectively. Kosko

and Guest (1987) and Kosko (1987) have shown that (1) and (2) can be used to construct

feedback pathways from F2 to F, so that the two-level feedback network F,  F2 has

convergent trajectories.

12



For example. if the bottoin-up interaction F, F2 ob)eys an additive equaltion

x, B, xB., + >gj(yj)z,j + J, (50)

1

where 13 and J, are input terms. This definition creates a symmetric interaction matrix

by closing the top-down feedback loop, since if f,(z 2 ) influences Y, with coefficient zq- inl

(49), then g, (yj) influences xi with the same coefficient zi 3 . Thus by defining an augmented

vector (XI 1 X21... i XY 1 Y/21 ... Ym) of STM activities, system (49)-(50) as a whole defines

an additive model (7) with an (n + m) x (n + m) symmetric coefficient matrix.

The same procedure can be used to symmetrize many other neural network models.

Kosko and Guest (1987) have described optical implementations for this procedure, and

Kosko (1987) has used the symmetrized additive model to discuss minimization of fuzzy

entropy.

10. Volt erra-Lot ka. Gvilpi-Ayala, arid Eigen-Schiuster Models

The Cohen-Grossberg model was designed to also include models which arose in other

areas of biology than neural network theory. For example. it includes the classical

Volterr.4-Lotka Model

dn
X= A,x,(1 - E Bi 3xi) (51)

j=1

of population biology (Lotka. 1956), thev

Gilpi-Ayala 'Model

d n (52)~
di' =IL D, B / 52

also from popidlt ion biology ((;ilpiTI andl Avala. 1973). and the

~ ~ ~'i.~ lie



Eigen-Schuster Model

d p - 1 P)= - q ix) (53)

j=1

from the theory of macromolecular evolution (Eigen and Schuster, 1978). In all of these

models. either the amplification function a(x) is non-constant, or the self-signal function

b,(x,) is nonlinear, or both.

11. Concluding Remarks: Comparative Analysis and Model Selection

The specialized models summaried in Sections 2-9 illustrate that model (1) and Lia-

punov function (2) embody a general principle for designing CAM devices from coopera-

tive-competitive feedback models. These models are said to be absolutely stable because

the CAM property is not destroyed by changing the parameters, inputs, or initial values

of the model. The persistence of the CAM property under arbitrary parameter changes

enables learning to change system parameters in response to unpredictable input envi-

ronments without destroying CAM. Nonetheless, the transformation from input patterns

to stored patterns executed by a network with adaptively altered parameters can differ

significantly from its original transformation.

The Cohen-Grossberg analysis emphasizes the critical role of mathematical methods

in classifying and understanding very large systems of nonlinear neural networks (VLSN).

Without such an integrative approach. it is sometimes difficult to tell even whether or

not a model is really new computationally. or whether it is a variant of a known model

in different coordinates or notation. For example. many scientists have not realized that

models (19) and (21) are mathematically equivalent. Table 1 describes the relationships

between models summarized herein by such an analysis. Thus the Brain-State-in-a-Box

and Boltzmann machine models enjoy a CAM property for the same reason that any

additive or Cohen-Grossberg model does. On the other hand. the B.SB model may have

special propertie- that may make it ideal for celrtain ta~k-. or it may be too specialized to



accomplislh certain tasks which are better dealt with using a more general additive model.

or even a shunting model.

Table 1

The set of specialized properties which differentiate one model from another ultimately

provides the computational rationale for continued interest in that model, whether because

its set of properties better explain an important behavioral or neural data base, or because

these properties enable the model to more efficiently solve an important technological

problem. Indeed, the Cohen-Grossberg (1983) model was developed to integrate many of

the specialized additive and shunting models which had arisen in applications since the late

1960's. Once such an integrative design is recognized, a comparative analysis of specialized

models is mandated within the computational framework defined by the design principle

and its unifying mathematical method. Such a comparative analysis needs to clearly

distinguish between the model-independent properties that are shared by all models which

exemplify the design and the unique combinations of model-dependent properties which

both the evolutionary process and the human engineer seek to utilize to their maximal

advantage.

..........



TABLE I

MP (1943)

ADDITIVE (1967) BSB (1977)

BM (1985)

CG (1983) BAM (1987)

SHUNTING (1973) MF (1978, 1986)

Organization in terms of decreasing generality of the models described in Section 9. Abbre-

viations: CG = Cohen-Grossberg; MP = McCulloch-Pitts; BSB = Brain-State-in-a-Box:

B'M = Boltzmann Machine; BA.I = Bidirectional Associative Memory; MF = Masking

Field.
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